Publications

2024[ to top ]
  • The Interplay of Uncertainty Modeling and Deep Active Learning: An Empirical Analysis in Image Classification. Huseljic, Denis; Herde, Marek; Nagel, Yannick; Rauch, Lukas; Strimaitis, Paulius; Sick, Bernhard. In Transactions on Machine Learning Research. 2024.
  • Fast Fishing: Approximating BAIT for Efficient and Scalable Deep Active Image Classification. Huseljic, Denis; Hahn, Paul; Herde, Marek; Rauch, Lukas; Sick, Bernhard. In European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD), bll 280–296. 2024.
  • Annot-Mix: Learning with Noisy Class Labels from Multiple Annotators via a Mixup Extension. Herde, Marek; Lührs, Lukas; Huseljic, Denis; Sick, Bernhard. In arXiv e-prints, bl arXiv:2405.0338. 2024.
2023[ to top ]
  • Who knows best? A Case Study on Intelligent Crowdworker Selection via Deep Learning. Herde, Marek; Huseljic, Denis; Sick, Bernhard; Bretschneider, Ulrich; Oeste-Reiß, Sarah. In Workshop on Interactive Adapative Learning (IAL), ECML PKDD, bll 14–18. 2023.
  • Role of Hyperparameters in Deep Active Learning. Huseljic, Denis; Herde, Marek; Hahn, Paul; Sick, Bernhard. In Workshop on Interactive Adaptive Learning (IAL), ECML PKDD, bll 19–24. 2023.
  • Multi-annotator Deep Learning: A Probabilistic Framework for Classification. Herde, Marek; Huseljic, Denis; Sick, Bernhard. In Transactions on Machine Learning Research. 2023.
  • ActiveGLAE: A Benchmark for Deep Active Learning with Transformers. Rauch, Lukas; Aßenmacher, Matthias; Huseljic, Denis; Wirth, Moritz; Bischl, Bernd; Sick, Bernhard. In European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD), bll 55–74. Springer, 2023.
  • Active Learning with Fast Model Updates and Class-Balanced Selection for Imbalanced Datasets. Huang, Zhixin; He, Yujiang; Herde, Marek; Huseljic, Denis; Sick, Bernhard. In Workshop on Interactive Adapative Learning (IAL), ECML PKDD, bll 28–45. 2023.
  • Active Label Refinement for Semantic Segmentation of Satellite Images. Pham, Minh Tuan; Wijesingha, Jayan; Kottke, Daniel; Herde, Marek; Huseljic, Denis; Sick, Bernhard; Wachendorf, Michael; Esch, Thomas. In arXiv e-prints, bl arXiv:2309.06159. 2023.
2022[ to top ]
  • Fast Bayesian Updates for Deep Learning with a Use Case in Active Learning. Herde, Marek; Huang, Zhixin; Huseljic, Denis; Kottke, Daniel; Vogt, Stephan; Sick, Bernhard. In arXiv e-prints, bl arXiv:2210.06112. 2022.
  • Enhancing Active Learning with Weak Supervision and Transfer Learning by Leveraging Information and Knowledge Sources. Rauch, Lukas; Huseljic, Denis; Sick, Bernhard. In Workshop on Interactive Adaptive Learning (IAL), ECML PKDD, bll 27–42. 2022.
  • A Review of Uncertainty Calibration in Pretrained Object Detectors. Huseljic, Denis; Herde, Marek; Muejde, Mehmet; Sick, Bernhard. In arXiv e-prints, bl arXiv:2210.02935. 2022.
  • A Concept for Automated Polarized Web Content Annotation based on Multimodal Active Learning. Herde, Marek; Huseljic, Denis; Mitrovic, Jelena; Granitzer, Michael; Sick, Bernhard. In Workshop on Interactive Adaptive Learning (IAL), ECML PKDD, bll 1–6. 2022.
2021[ to top ]
  • Toward optimal probabilistic active learning using a Bayesian approach. Kottke, Daniel; Herde, Marek; Sandrock, Christoph; Huseljic, Denis; Krempl, Georg; Sick, Bernhard. In Machine Learning, 110(6), bll 1199–1231. Springer, 2021.
  • Separation of Aleatoric and Epistemic Uncertainty in Deterministic Deep Neural Networks. Huseljic, Denis; Sick, Bernhard; Herde, Marek; Kottke, Daniel. In International Conference on Pattern Recognition (ICPR), bll 9172–9179. IEEE, 2021.
  • Out-of-distribution Detection and Generation using Soft Brownian Offset Sampling and Autoencoders. Möller, Felix; Botache, Diego; Huseljic, Denis; Heidecker, Florian; Bieshaar, Maarten; Sick, Bernhard. In Workshop on Safe Artificial Intelligence for Automated Driving (SAIAD), CVPR, bll 1–10. 2021.
  • Multi-annotator Probabilistic Active Learning. Herde, Marek; Kottke, Daniel; Huseljic, Denis; Sick, Bernhard. In International Conference on Pattern Recognition (ICPR), bll 10281–10288. IEEE, 2021.
  • A Survey on Cost Types, Interaction Schemes, and Annotator Performance Models in Selection Algorithms for Active Learning in Classification. Herde, Marek; Huseljic, Denis; Sick, Bernhard; Calma, Adrian. In IEEE Access, 9, bll 166970–166989. IEEE, 2021.
  • A Concept for Highly Automated Pre-Labeling via Cross-Domain Label Transfer for Perception in Autonomous Driving. Bieshaar, Maarten; Herde, Marek; Huselijc, Denis; Sick, Bernhard. In Workshop on Interactive Adaptive Learning (IAL), ECML PKDD. 2021.
2020[ to top ]
  • Toward Optimal Probabilistic Active Learning Using a Bayesian Approach. Kottke, Daniel; Herde, Marek; Sandrock, Christoph; Huseljic, Denis; Krempl, Georg; Sick, Bernhard. In arXiv e-prints, bl arXiv:2006.01732. 2020.
2019[ to top ]
  • Limitations of Assessing Active Learning Performance at Runtime. Kottke, Daniel; Schellinger, Jim; Huseljic, Denis; Sick, Bernhard. In arXiv e-prints, bl arXiv:1901.10338. 2019.
2018[ to top ]
  • Towards Proactive Health-enabling Living Environments: Simulation-based Study and Research Challenges. Tomforde, Sven; Dehling, Tobias; Haux, Reinhold; Huseljic, Denis; Kottke, Daniel; Scheerbaum, Jonas; Sick, Bernhard; Sunyaev, Ali; Wolf, Klaus-Hendrik. In International Workshop on Self-optimisation in Organic and Autonomic Computing Systems (SAOS), ARCS, bll 1–8. VDE, 2018.
  • The Other Human in The Loop -- A Pilot Study to Find Selection Strategies for Active Learning. Kottke, Daniel; Calma, Adrian; Huseljic, Denis; Sandrock, Christoph; Kachergis, George; Sick, Bernhard. In International Joint Conference on Neural Networks (IJCNN). IEEE, Rio de Janiero, Brazil, 2018.
2017[ to top ]
  • Challenges of Reliable, Realistic and Comparable Active Learning Evaluation. Kottke, Daniel; Calma, Adrian; Huseljic, Denis; Krempl, Georg; Sick, Bernhard. In Workshop on Interactive Adaptive Learning (IAL), ECML PKDD, CEUR Workshop Proceedings, bll 2–14. 2017.