<table>
<thead>
<tr>
<th>Module level</th>
<th>Credits</th>
<th>Language</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master</td>
<td>6</td>
<td>English</td>
<td>Annual</td>
</tr>
</tbody>
</table>

Module designation

Rotor Aerodynamics

Course(s)

Rotor Aerodynamics

Person responsible for the module
Prof. Dr.–Ing. Martin Lawerenz

Lecturer
Prof. Dr.–Ing. Martin Lawerenz,
M. Sc. Irfan Ahmed

Workload
180 h
(42 h lecture, 42 h exercises, 21 h online sessions, 75 h examination preparation)

Relation to curriculum
Specialist studies, simulation and structural technology, elective

Type of teaching, contact hours
Online unit, telephone, Adobe Connect, telephone, digital communications

Requirements according to examination regulations
Module Fluid Mechanics

Recommended prior learning
Modules Theoretical Fluid Mechanics and Computational Fluid Dynamics

Module objective / intended learning outcomes
Upon completion of the course, students will have ability to assess and analyze the flow field of wind turbine rotors and will be able to perform basic aerodynamic design of the blades.

- **Knowledge**: Aerodynamics of wind turbine rotor
- **Skills**: Performance estimation of wind turbine, aerodynamic design of rotors, numerical simulation–methods.
- **Competencies**: Analysis and assessment of wind turbine flow–field, and the corresponding energy transmission.

Content

1) Introduction.
2) Basic Aerodynamics.
 - Coordinate System & Velocity Triangle.
 - Aerodynamic Variables.
 - Dimensionless Parameters.
 - Conservation Laws.
3) Wind Turbine Model.
 - D Representation of Wind Turbine Flow–Field.
 - Betz’s Law of Maximum Power.
 - Extensions for Vortical Flow.
4) Blade Element Method.
 - Classical Blade Element Method.
5) Airfoil Aerodynamics.
 - Potential Flow.
 - Streamline Curvature Method.
 - Stream–Function Method.
- Viscous Flow.
 - Boundary Layer Concept.
 - Laminar and Turbulent Boundary Layers.
 - Loading of Boundary Layer & Separation.
- Aerodynamic Losses.
 - Definition.
 - Losses in 2-D Flow.
 - Losses in 3-D Flow.

6) Boundary Conditions.
- Inflow Wind.
- Wind Shear.
- Gust Loads.
- Flow near the Tower.

- Objectives.
- Constraints.
- Optimization Methods.
- Optimization of Wind Turbine Rotor.

8) Numerical Simulation of Wind Turbine Flow (Examples).
- Steady-state Navier–Stokes Simulation.
- Unsteady Navier–Stokes Simulation.
 - Rotor–Tower Interaction.
 - Dynamic Inflow.

<table>
<thead>
<tr>
<th>Study and examination requirements and forms of examination</th>
<th>Written Test (60min) or online oral examination (30 min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media employed</td>
<td>Online script</td>
</tr>
</tbody>
</table>

Reading list
ASME Press, 2009