<table>
<thead>
<tr>
<th>Module level</th>
<th>Creditpoints</th>
<th>Language</th>
<th>Return:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master</td>
<td>6</td>
<td>English</td>
<td>annual</td>
</tr>
</tbody>
</table>

Module designation

Rotor Blades

Course(s)

Rotor Blades

<table>
<thead>
<tr>
<th>Code</th>
<th>Subtitle: Material properties – processing – characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Person responsible for the module

Prof. Dr.–Ing. Hans–Peter Heim

Lecturer

Prof. Dr.–Ing. Hans–Peter Heim, Prof. Dr.–Ing. Angela Ries, Dr.–Ing Maik Feldmann

Workload

Workload 180h (170 h private study, 10h contact time)

Relation to curriculum

Specialist studies, Simulation and Structural Technology, elective

Type of teaching, contact hours

Self–studies with presentation slides and additional provided literature, regular consultation hours

Requirements according to examination regulations

None

Recommended prerequisites

Basic modules

Module objective / intended learning outcomes

This course provides fundamental knowledge of polymer material properties and polymer processing.

The design, manufacturing, mechanical properties and testing of polymer materials for rotor blades will be presented.

The student should learn the fundamental knowledge of polymer materials and polymer processing.

The conventional structure of a rotor blade is known and the processing methods for the skin and core materials as well as for the sandwich manufacturing.

At the end of the module the student is able to understand the manufacturing process and obtain comprehensive knowledge of component construction and characterization.

Content:

- Polymer material properties
 - Structure, chemical compound (thermoplastic, thermoset, elastomer)
 - Fiber reinforcement, design of fiber reinforced components
 - Mechanical properties (temperature and time dependency)
- Processing technology
 - Injection moulding
 - Extrusion, foam extrusion
 - Resin transfer moulding (RTM)
 - Reaction Injection Moulding (RIM)
 - Tape laying and Prepreg processing
 - Introduction in polymer processing
 - Hand lamination
- Sandwich materials
 - Structure of rotor blades
 - Composites / skin materials
 - Core materials
 - Processing technology (bonding, lamination,...)
- Material characterization
 - Mechanical testing
 - Quasistatic, toughness, fatigue
- Physical characterization
- Structural analysis, density, thermal analysis, fiber orientation

<table>
<thead>
<tr>
<th>Study and examination requirements and forms of examination</th>
<th>oral examination (45min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media employed</td>
<td>online script, additional literature</td>
</tr>
</tbody>
</table>

Reading list:

Fiber–Reinforced Composites
Materials, Manufacturing, and Design, Third Edition
Author: P.K. Mallick

International Plastics Handbook – The Resource for Plastics Engineers
Authors: Osswald, Tim A.; Baur, Erwin; Brinkmann, Sigrid; Oberbach, Karl and Schmachtenberg, Ernst