Module level
Master

Credit points
6

Language
English

Semester
annual

Module designation

Theoretical Fluid Mechanics

Course(s)

1. **Basics of 3D fluid flow**
2. **Basics of Hyperbolic Systems and Fluid Structure Interaction**

<table>
<thead>
<tr>
<th>Code</th>
<th>Subtitle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person responsible for the module</td>
<td>Prof. Dr. Andreas Meister, Prof. Dr.-Ing. Olaf Wünsch</td>
</tr>
</tbody>
</table>
| Lecturer | 1. Prof. Dr.-Ing. Olaf Wünsch
2. Prof. Dr. Andreas Meister |
| Workload | 1. Workload: 90 h (15 h online presentation, 45 h private study, 30 h exercise)
2. Workload: 90 h (15 h online presentation, 45 h private study, 30 h exercise) |
| Relation to curriculum | Specialist studies, Simulation and Structural Technology, elective |
| Type of teaching, contact hours | Skype, virtual classrooms, online presentation, digital communication |
| Requirements according to examination regulations | None |
| Recommended prerequisites: | Module Fluid Mechanics |

Module objective / intended learning outcomes

Students know how to model and calculate analytically complex and 3D fluid flow in wind energy systems.

Content

1. Balance of mass, momentum and energy for newtonian fluids (gaseous and liquid, formulation in integral and differential form, vortex transportation equation, acoustic phenomena)
 Turbulent flow (physical basics of turbulence, models for numerical simulations)
2. Theory of characteristics
 Fluid structure interaction

Study and examination requirements and forms of examination

Written exam (120 min) or online oral examination (30 min) or written homework (25 pages) with presentation of the homework (30 min). The examinations are going to 75% (written homework) of the shares and 25% (presentation) in the final grade of the module.

Media employed

online script

Reading list