Module level

Master

<table>
<thead>
<tr>
<th>Credit points</th>
<th>Language</th>
<th>Return annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>English</td>
<td>annual</td>
</tr>
</tbody>
</table>

Module designation

Linear Computational Structural Mechanics

Course(s)

Linear Computational Structural Mechanics

Code and Subtitle

<table>
<thead>
<tr>
<th>Person responsible for the module</th>
<th>Prof. Dr.–Ing. Detlef Kuhl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer</td>
<td>Prof. Dr.–Ing. Detlef Kuhl</td>
</tr>
</tbody>
</table>

Workload

180 h (30h contact time, 90h private study, 60h homework)

Relation to curriculum

Specialist studies, Simulation and Structural Technology, elective

Type of teaching, contact hours

Chapter–Checks, virtual classroom, online scripts, digital communication

Requirements according to examination regulations

Modules Mathematic, Solid Mechanics

Recommended prerequisites

Modules Application of Software Tools

Module objective / intended learning outcomes

This course provides an introduction to linear computational structural mechanics using the finite element method and dynamics solution procedures. It is based on the fundamental education in mathematics, solid mechanics and application of software tools. Subsequent courses in solid mechanics structural technology and fluid structure interaction as one particular ingredient of the fluid mechanics courses are using the basic knowledge of computational structural mechanics. The present course is continued in Nonlinear Computational Structural Mechanics.

At the end of the course, the students should:

- Understand the basic theory of the finite element method including the initial boundary value problem, the weak formulation and the discretization in space and time
- Have knowledge of different finite element formulations, their advantages and disadvantages, their strengths and limitations
- Understand the static solution process using the finite element methods
- Knowing the eigenvalue analysis and its application to wind power plants
- Knowing different types of time integrations schemes and their properties
- Be able to develop a basic finite element program using MATLAB
- Be familiar with the application of finite element programs to the static and dynamic analysis of wind power plant components

Content

The course Linear Computational Structural Mechanics provides the theoretical basis, the development and the application of the finite element method. Special attention is taken to the requirements for the static and dynamic analysis of wind power plants.

- Brief summary of linear continuum mechanics
- Weak formulation of elastostatics and elastodynamics
- Development of 1d–finite–element–methods
- Development of 3d– and 2d–finite–element–methods
- Development of 2D- and 3D-truss and beam elements
- Assembly, static analysis and post-processing
- Eigenvalue analysis
- Explicit and implicit dynamic solution within the time domain
- Linear finite element program development
- Numerical analyses of components of wind power plants using a MATLAB finite element code

<table>
<thead>
<tr>
<th>Study and examination requirements and forms of examination</th>
<th>Written exam (120 min) or online oral examination (30 min) or written homework (25 pages) with presentation of the homework (30 min). The examinations are going to 75% (written homework) of the shares and 25% (presentation) in the final grade of the module.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media employed</td>
<td>Online materials as lecture notes, presentations, interactive learning modules and chapter checks. virtual classroom</td>
</tr>
</tbody>
</table>

Reading list

Textbooks on the linear finite element method, e.g.

- Hughes (1987): The Finite Element Method. Linear Static and Dynamic Finite Element Analysis
- Bathe (1996): Finite Element Procedures
- Szabo & Babuska (1991): Finite Element Analysis

Particular journal papers as basis of homeworks, e.g.