<table>
<thead>
<tr>
<th>Module level</th>
<th>Creditpoints</th>
<th>Language</th>
<th>Return annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master</td>
<td>6</td>
<td>English</td>
<td></td>
</tr>
</tbody>
</table>

Module designation

Application of Software Tools

Course(s)

Application of Software Tools

<table>
<thead>
<tr>
<th>Code</th>
<th>Subtitle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Person responsible for the module

Prof. Dr.–Ing. Sigrid Wenzel

Lecturer

1. Dipl.–Inf. Markus Schmitz
2. Dr. Stefan Kopecz
3. Dipl.–Ing. Tobias Gleim M.Sc.
4. Prof. Dr.–Ing. Olaf Wünsch

Workload

Workload:

1. 45 h (5 h online presentation, 10 h private study, 30 h home work)
2. 45 h (5 h online presentation, 10 h private study, 30 h home work)
3. 45 h (5 h online presentation, 10 h private study, 30 h exercise)
4. 45 h (5 h online presentation, 10 h private study, 30 h home work)

Relation to curriculum

Basic studies, compulsory optional subject

Type of teaching, contact hours

Skype, virtual classrooms, online presentation, online transmission.

Requirements according to examination regulations

None

Recommended prerequisites

None

Module objective / intended learning outcomes

The students should be able to design and implement structured programs using the object-oriented paradigm and know how to apply different simulation programs. The students have the ability to apply MATLAB to distinguish mathematical problems as well as the finite volume software OpenFoam in order to simulate fluid flows in technical apparatus. Additionally, the students have the ability to apply a semi-commercial finite element software to simulate structural components of wind power plants and to transfer their knowledge to classical commercial finite element packages as e.g. Abaqus, ANSYS, Nastran. In particular, geometrical modeling, meshing, static and dynamic analyses and the interpretation of the results are familiar to the students.

Content

1. Object-oriented Programming with Java
 Introduction in the OO-paradigm, data structures and methods, recursive functions, programming example.

2. Application of MATLAB
 Introduction in MATLAB, numerical solution of large linear systems, post processing

3. Application of MATLAB finite element software
 Introduction to mesh generation, linear static and dynamic structural analyses, post-processing, simulation of wind power plants components

4. Application of OpenFoam
 Introduction in OpenFoam, discretization of basic geometries and mesh generation, handling of OpenFoam, examples of fluid flow simulations

Study and examination requirements and forms of examination

Written homework (10–25 pages)
<table>
<thead>
<tr>
<th>Media employed</th>
<th>slides</th>
</tr>
</thead>
</table>

Reading list
Reading list will be provided by lecturer via Moodle online platform.