Module level
Master

<table>
<thead>
<tr>
<th>Credit points</th>
<th>Language</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>English</td>
<td>annual</td>
</tr>
</tbody>
</table>

Module designation

Fluid Mechanics

Course(s)
1. Advanced Fluid Dynamics
2. Experimental Methods in Fluid Mechanics

<table>
<thead>
<tr>
<th>Code</th>
<th>Subtitle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person responsible for the module</th>
<th>Prof. Dr.-Ing. Martin Lawerenz, Prof. Dr.-Ing. Olaf Wünsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lecturer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Olaf Wünsch</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Martin Lawerenz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Workload: 120 h (20 h online presentation, 60 h private study, 40 h exercise)</td>
</tr>
<tr>
<td></td>
<td>2. Workload: 60h (7h online session, 14 h lecture, 14 h exercise, 25 h examination preparation)</td>
</tr>
</tbody>
</table>

Relation to curriculum
Basic studies, compulsory optional subject

Type of teaching, contact hours
Skype, virtual classrooms, Online-unit, digital communications

Requirements according to examination regulations
None

Recommended prerequisites
None

Module objective / intended learning outcomes

Students know how to model the fluid flow in wind energy systems and apply basic calculation methods in order to predict pressure, velocities, forces and momentums in technical systems.

Upon completion of the course, students will have abilities in terms of:
- **Knowledge**: Methods and devices to analyse the flow-field experimentally.
- **Skills**: Performing measurements and flow-field analysis and visualization using probes and optical sensors.
- **Competences**: Establishing appropriate experimental setups, assessment of the measured data.

Content

Advanced Fluid dynamics
- Fluid- and aerostatic
- Dynamic of incompressible and compressible fluid flow
- Balance of mass and momentum
- Friction flow
- Dimensional analysis and similarity

Experimental Methods in Fluid mechanics
- Flow–Field Parameters.
- Pressure Measurement.
- Velocity Measurement
- Flow Visualization.
- Post–Processing & Data Reduction, Error Estimation.

Study and examination requirements and forms of examination
Written Test (120 min) or online oral examination (30 min)

Media employed
online script

Reading list

Tavoularis, S.: Measurements in Fluid Mechanics, Cambridge University Press, 2005