Syllabus: Application of Software Tools

Instructors

Dipl.-Inf. Markus Schmitz
Email: m.schmitz@uni-kassel.de

Dipl.-Ing. Tobias Gleim
Email: tgleim@uni-kassel.de

Dr. Stefan Kopecz
Email: kopecz@mathematik.uni-kassel.de

Prof. Dr.-Ing. Olaf Wünsch
Email: wuensch@uni-kassel.de
Course goals

The students are able to design and implement structured programs using the object-oriented paradigm and know how to apply different simulation programs. The students have the ability to apply MATLAB to distinguish mathematical problems as well as the finite volume software OpenFoam in order to simulate fluid flows in technical apparatus. Additionally, the students have the ability to apply a semi-commercial finite element software to simulate structural components of wind power plants and to transfer their knowledge to classical commercial finite element packages as e.g. Abaqus, ANSYS, Nastran. In particular, geometrical modeling, meshing, static and dynamic analyses and the interpretation of the results are familiar to the students.

Pre-requisites

none

Seminar structure, seminar location and times

The module Application of Software Tools is divided in four unit topics. These unit topics will be taught by different lecturers and in different teaching concepts - (1) synchronous and (2) asynchronous. In the synchronous teaching concept the lecturer will be held a live Online Session via Adobe Connect in ecampus (unit 9-12). In the asynchronous teaching concept the lecturer will provided the students with tutorial videos and homework assignments (unit 1-8 and 13-16).

All questions on understanding the material should be directed to your fellow students in the online forums first! Any questions which could not be answered already by your classmates are answered by the lectures via email or online consultation hours.

Participation requirements

Unit 1-8: Students can view the video tutorials according to the following unit plan. Additional private study will have to be made as mentioned in the video tutorials. Every unit will have a graded homework.

Unit 9-12: Students can take place in the live lectures and can view the video tutorials according to the following unit plan. Additional private study will have to be made as mentioned in the video tutorials. Every unit will have a graded homework.

Unit 13-16: No real-time class seminars, but online consultation hours announced by the lecturer.
Texts, reading and other materials

Unit 1-12: Readings will be made available in moodle or require publically available external web resources.

Unit 13-16: Slides are posted on Moodle. Additional materials are available on external web resources.

Hardware and software requirements

Unit 1-4: All students need access to a computer with the rights to install the Java JDK and eclipse, or have both already installed. Installation and usage will be dealt with in the first unit.

Unit 5-12: All students need access to a computer with the software “Matlab”, or to a computer with a terminal (windows: putty, linux or mac: terminal) to get access to our Matlab server.

Unit 13-16: All students need access to a computer with the rights to install a Virtual Box in order to use the operation system Ubuntu (linux). Installation and usage will be explained in the first unit. The use of a text processing system is recommendable.

Art of Examination

Every part of the module will be graded separately.
Unit 1-12 will have a graded homework for each unit.
Unit 13-16 will have one graded homework.
The module grade will the average of the grades of the four parts.
Grading policy

The grading scale used in this course is the same as for all WES courses. For all single assignments, the following scale is used:

<table>
<thead>
<tr>
<th>Category</th>
<th>Grade range</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very good</td>
<td>1,0 - 1,3</td>
<td>Excellent performance</td>
</tr>
<tr>
<td>Good</td>
<td>1,7 - 2,3</td>
<td>Performance significantly above average</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>2,7 - 3,3</td>
<td>Average performance</td>
</tr>
<tr>
<td>Sufficient</td>
<td>3,7 - 4,0</td>
<td>Performance which, despite some shortcomings, meets the minimum standards of the course</td>
</tr>
<tr>
<td>Fail</td>
<td>5,0</td>
<td>Does not meet minimum course requirements</td>
</tr>
</tbody>
</table>
Unit 1
Nov. 03. – 07.
Object - oriented Programming with Java

Content
The first unit will cover the requirements for using eclipse to write JAVA programs as well as a first JAVA “Hello World”-program. Additionally JAVA variable types and handling as well as output via the console will be explained.

Homework
Write a simple JAVA program with mathematical operations using different variable types.

Unit 2
Nov. 10. – 14.
Object - oriented Programming with Java

Content
Unit 2 will cover different methods to control program flow: IF-Statements and different types of loops.

Homework
Write a JAVA program with loops and IF-statements.

Unit 3
Nov. 17. – 21.
Object - oriented Programming with Java

Content
The design and usage of subroutines will be addressed in unit 3.

Homework
Write a program with subroutines.

Unit 4
Nov. 24. – 28.
Object - oriented Programming with Java

Content
Unit 4 will cover some advanced programming principles and programming in a bigger context.

Homework
Write a complex java program requiring all contents of the previous units.

Unit 5
Dec. 01. – 05.
Application of MATLAB

Content
The basic features of MATLAB will be addressed in Unit 5 including the components of the MATLAB desktop, working with M-files, precedence, arithmetic and the generation and manipulation of arrays and matrices.
Application of Software Tools

Online M.Sc. Wind Energy Systems // WS 2014/15

Homework:
Questions and simple programming exercises requiring knowledge of the contents of unit 5

Unit 6
Dec. 08. – 12.
Application of MATLAB

Content
Unit 6 will primarily be focused on relational and logical operators and flow control. IF- and SWITCH-statements and different types of loops will be addressed as well as some advanced programming features like function handles, sub-functions and nested functions.

Homework
Questions and advanced programming exercises requiring knowledge of the contents of units 5 -- 6

Unit 7
Dec. 15. – 19.
Application of MATLAB

Content
Unit 7 will cover MATLAB's graphics capabilities. Different plot types for two- and three-dimensional graphics and the customization of the figures will be addressed.

Homework
Programming exercises requiring knowledge of the contents of units 5 -- 7

Unit 8
Jan. 12. – 16.
Application of MATLAB

Content
Unit 8 will address further advanced programming features like structures and cell arrays, MATLAB's sparsity features and file input / output.

Homework
Questions and advanced programming exercises requiring knowledge of the contents of units 5 -- 8

Unit 9
Jan. 19. – 23.
Application of MATLAB finite element software

Content
The first unit will cover the requirements for using the Finite Element Program. In a live lecture, the finite element program will be explained in detail. The program sequence, as well as the sub-functions of the program will be elucidated. In the first Content, 1D Problems will be examined.
Homework Create the sample routine for a given structure and evaluate the results.

Unit 10
Jan. 26 – 30. Application of MATLAB finite element software

Content In the second content, truss elements in 3D will be examined.

Homework Create the sample routine for a given 3D wind turbine truss-structure and evaluate the static results.

Unit 11
Feb. 02. – 06. Application of MATLAB finite element software

Content In the third content, dynamic studies are examined for truss elements.

Homework Create the sample routine for a given 3D wind turbine truss-structure and evaluate the dynamic results.

Unit 12
Feb. 09. – 13. Application of MATLAB finite element software

Content In the fourth content, static studies are performed using 2D elements.

Homework Create the sample routine for a given 2D wind turbine structure and compare the results with the Homework of unit 10.

Unit 13
Feb. 16. – 20. Application of OpenFoam

Lecture: Application of Open Foam The first unit gives a brief introduction in computational fluid dynamics (CFD). The basics of using the software tool OpenFoam are explained. A compiled version of the tool is provided.

Homework Understanding of using CFD software, installation and integration of the software, start of the program, first introduction.
Application of Software Tools

Unit 14
Feb. 23. – 27.

Application of OpenFoam

Homework: Application of OpenFoam

Execute the given tutorial of a cavity lid driven fluid flow: meshing, compute the velocity and pressure field, change of boundary and operation conditions, visualization of the results.

Unit 15
Mar 02. – 06.

Application of OpenFoam

Homework: Application of OpenFoam

Understanding of the homework assignment, meshing the new geometry, simulation of the fluid flow, calculation of forces on the geometry.

Unit 16
Mar. 09. – 13.

Application of OpenFoam

Homework: Application of OpenFoam

Writing a technical report of the homework assignment. This report is the basis of the grading.